Abstract

Thermal stability of lactase (β-galactosidase) enzyme has been studied by a variety of physico-chemical methods. β-galactosidase is the main active ingredient of medications for lactose intolerance. It is typically produced industrially by the Aspergillus oryzae filamentous fungus. Lactase was used as a model to help understand thermal stability of enzyme-type biopharmaceuticals. Enzyme activity (hydrolyzation of lactose) of β-galactosidase was determined after storing the solid enzyme substance at various temperatures. For a better understanding of the relationship between structure and activity changes we determined the mass and size of the molecules with gel electrophoresis and dynamic light scattering and detected aggregation processes. A bottom-up proteomic procedure was used to determine the primary amino acid sequence and to investigate changes in the N-glycosylation pattern of the protein. NMR and CD spectroscopic methods were used to observe changes in higher order structures and to reveal relationships between structural and functional changes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.