Abstract
We consider the 2D Hubbard model in the strong-coupling case (U ≫ W) and at low electron density (nd2 ≪ 1). We find an antibound state as a pole in the two-particle T-matrix. The contribution of this pole in the self-energy reproduces a two-pole structure in the dressed one-particle Green-function similar to the Hubbard-I approximation. We also discuss briefly the Engelbrecht-Randeria mode which corresponds to the pairing of two holes below the bottom of the band for U ≫ W and low electron density. Both poles produce nontrivial corrections to Landau Fermi-liquid picture already at low electron density but do not destroy it in 2D.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.