Abstract

The colloidal processing of nearly monodisperse and highly crystalline single-domain ferroelectric or ferromagnetic nanocubes is a promising route to produce superlattice structures for integration into next-generation devices, whereas controlling the local behaviour of nanocrystals is imperative for fabricating highly-ordered assemblies. The current picture of nanoscale polarization in individual nanocrystals suggests a potential presence of a significant dipolar interaction, but its role in the condensation of nanocubes is unknown. We simulate the self-assembly of colloidal dipolar nanocubes under osmotic compression and perform the microstructural characterization of their densified ensembles. Our results indicate that the long-range positional and orientational correlations of perovskite nanocubes are highly sensitive to the presence of dipoles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.