Abstract

Selective hydrogen combustion (SHC) in the presence of light hydrocarbons was demonstrated with a series of Mn‐containing mixed oxide redox catalysts in the context of a chemical looping‐oxidative dehydrogenation scheme. Unpromoted and 20 wt % Na2WO4‐promoted Mg6MnO8, SrMnO3, and CaMnO3 exhibited varying SHC capabilities at temperatures between 550 and 850°C. Reduction temperature of unpromoted redox catalysts increased in the order Mg6MnO8 < SrMnO3 < CaMnO3. Promotion with 20 wt % Na2WO4 resulted in more selective redox catalysts capable of high‐temperature SHC. XPS analysis revealed a correlation between suppression of near‐surface Mn and SHC selectivity. Na2WO4/CaMnO3 showed steady SHC performance (89% H2 conversion, 88% selectivity) at 850°C over 50 redox cycles. In series with a Cr2O3/Al2O3 ethane dehydrogenation catalyst, Na2WO4/CaMnO3 combusted 84% of H2 produced while limiting COx yield below 2%. The redox catalysts reported can be suitable for SHC in a cyclic redox scheme for the production of light olefins from alkanes. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3141–3150, 2018

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.