Abstract

Valuable metals such as manganese, cobalt, nickel and copper are recycled from spent ternary lithium-ions batteries (LiBs) and are considered as the active metal precursor to prepare based-manganese multi oxide for VOCs oxidation. The results of characterization analysis indicate that the catalyst from spent LiBs shows larger specific surface area of 26.80 m2/g as well as abundant mesoporous structures on the surface, higher molar ratio of Mn4+/Mn3+ (0.70) and Olatt/Oads (1.68), better low-temperature reductivity and stronger intensity of weak acid sites in comparison with those of pure manganese oxides. The evaluation experiments show that the catalyst from waste exhibits more excellent catalytic performance of toluene combustion in comparison with pure manganese oxides. Furthermore, the presence of considerable amount of lithium and aluminum ions can severely weaken the catalytic activity while the co-existence of nickel, cobalt and copper ions contribute a lot to facilitate the catalytic behavior. In-situ DRIFT study implies that the introduction of lithium, aluminum, nickel, copper and cobalt into pure manganese oxides can facilitate toluene conversion to various extents, following the consecutive steps via benzyl species, benzoyl oxide species, benzaldehyde species, benzoate species and the primary intermediates are benzoate species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call