Abstract

1) To evaluate a novel theoretical model for in vivo axonal Mn(2+) transport with MRI data from the rat optic nerve (ON); and 2) to compare predictions from the new model with previously reported experimental data. Time-resolved in vivo T(1)-weighted magnetic resonance imaging (MRI) of adult female Sprague-Dawley rat (n = 9) ON was obtained at different timepoints after intravitreal MnCl(2) injection. A concentration-dependent and a rate-dependent function for the Mn(2+) retinal ganglion cell (RGC) axon entrance was convolved with three different transport functions and each model system was optimized to fit the ON data. The rate-limited input function gave a better fit to the data than the concentration-limited input. Simulations showed that the rate-limited input leads to a semilogarithmic relationship between injected dose and Mn(2+) concentration in the ON, which is in agreement with previously reported in vivo experiments. A random walk transport model and an anterograde predominant slow model gave a similar fit to the data, both better than an anterograde predominant fast model. The results indicate that Mn(2+) input into RGC axons is limited by a maximum entrance rate into the axons. Also, a wide range of apparent Mn(2+) transport rates seems to be involved, different from synaptic vesicle transport rates, meaning that manganese does not depict synaptic vesicle transport rates directly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.