Abstract

A “redox-stat” RMnR bioreactor was employed to simulate moderately reducing conditions (+ 420 mV) in Sb-contaminated shooting range soils for approximately 3 months, thermodynamically favoring Mn(IV) reduction. The impact of moderately reducing conditions on elemental mobilization (Mn, Sb, Fe) and speciation [Sb(III) versus Sb(V); Fe2+/Fe3+] was compared to a control bioreactor RCTRL without a fixed redox potential. In both bioreactors, reducing conditions were accompanied by an increase in effluent Sb(V) and Mn(II) concentrations, suggesting that Sb(V) was released through microbial reduction of Mn oxyhydroxide minerals. This was underlined by multiple linear regression analysis showing a significant (p < 0.05) relationship between Mn and Sb effluent concentrations. Mn concentration was the sole variable exhibiting a statistically significant effect on Sb in RMnR, while under the more reducing conditions in RCTRL, pH and redox potential were also significant. Analysis of the bacterial community composition revealed an increase in the genera Azoarcus, Flavisolibacter, Luteimonas, and Mesorhizobium concerning the initial soil, some of which are possible key players in the process of Sb mobilization. The overall amount of Sb released in the RMnR (10.40%) was virtually the same as in the RCTRL (10.37%), which underlines a subordinate role of anoxic processes, such as Fe-reductive dissolution, in Sb mobilization. This research underscores the central role of relatively low concentrations of Mn oxyhydroxides in influencing the fate of trace elements. Our study also demonstrates that bioreactors operated as redox-stats represent versatile tools that allow quantifying the contribution of specific mechanisms determining the fate of trace elements in contaminated soils.Key points• “Redox-stat” reactors elucidate Sb mobilization mechanisms• Mn oxyhydroxides microbial reductive dissolution has a major role in Sb mobilization in soils under moderately reducing conditions• Despite aging the soil exhibited significant Sb mobilization potential, emphasizing persistent environmental effects

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.