Abstract
Abstract. Manganese geochemistry in deep-sea sediments is known to vary greatly over the first few centimeters, which overlaps the in-sediment depth habitats of several benthic foraminiferal species. Here we investigated manganese incorporation in benthic foraminiferal shell carbonate across a six-station depth transect in the Gulf of Lions, NW Mediterranean, to unravel the impacts of foraminiferal ecology and Mn pore water geochemistry. Over this transect water depth increases from 350 to 1987 m, while temperature (∼13 ∘C) and salinity (∼38.5) remained relatively constant. Manganese concentrations in the tests of living (rose bengal stained) benthic foraminiferal specimens of Hoeglundina elegans, Melonis barleeanus, Uvigerina mediterranea, and Uvigerina peregrina were measured using laser ablation inductively coupled mass spectrometry (laser ablation ICP-MS). Pore water manganese concentrations show a decrease from shallow to deeper waters, which corresponds to a generally decreasing organic-matter flux with water depth. Differences in organic-matter loading at the sediment–water interface affects oxygen penetration depth into the sediment and hence Mn pore water profiles. Mn ∕ Ca values for the investigated foraminiferal species reflect pore water geochemistry and species-specific microhabitat in the sediment. The observed degree of variability within a single species is in line with known ranges in depth habitat and gradients in redox conditions. Both the Mn ∕ Ca ratio and interspecific variability hence reflect past Mn cycling and related early diagenetic processes within the sediment, making this a potential tool for bottom-water oxygenation and organic-matter fluxes. Dynamics of both in-sediment foraminiferal depth habitats and Mn cycling, however, limit the application of such a proxy to settings with relatively stable environmental conditions.
Highlights
Reconstructing past climate and environmental change largely depends on so-called proxies
Pore water dissolved manganese (Mn2+) concentrations were measured at all six stations
Manganese concentrations increase below the oxygen penetration depth at stations C and D (Fig. 3), with the highest in-sediment Mn2+ concentrations reached at station D
Summary
Reconstructing past climate and environmental change largely depends on so-called proxies. These proxies relate measurable variables in the geological record to target parameters, such as temperature, biological productivity, and bottom-water oxygenation. The carbonate shells of unicellular protists, foraminifera, are one of the most utilized signal carriers for reconstructing past environments. Both the census data of foraminifera and the geochemical composition of the shells are used in this context. The geochemical composition of the shells is investigated for their stable isotopic composition as well as for their trace and minor element incorporation Both pelagic and bottom-water conditions are recon-
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.