Abstract
AbstractMixtures of peat and substrate clays are commonly used as growth media for horticultural plant production. A quality protocol for substrate clays defines a threshold value of active manganese (Mnact = sum of exchangeable and easily reducible Mn) in substrate clays of < 500 mg kg–1 to prevent toxic reactions of plants. This threshold value was tested in experiments with peat‐clay blends under various growth conditions, and nutrient solution experiments were additionally conducted to investigate the effects of silicic acid and dissolved organic matter on the occurrence of Mn toxicity. Common bean (Phaseolus vulgaris L.) and hydrangea (Hydrangea macrophylla) plants were cultivated in different peat‐clay substrates and in peat under different moisture and pH levels. The clays varied in their Mnact content from 4–2354 mg kg–1. The results of the substrate experiments reveal that a threshold value for Mn in substrate clays is not justified, as plants grown in all peat‐clay substrates did not develop any Mn toxicity even at high substrate moisture or low pH conditions which are known to increase the Mn availability. The extraction of active Mn did not well reflect the Mn concentrations in plant dry matter and substrate solution. As plants tolerated high Mn concentrations in the substrate solution compared to the nutrient solution without toxicity symptoms, the influence of silicic acid and dissolved organic matter (DOM) on Mn toxicity was characterized in a nutrient‐solution experiment. Manganese toxicity was clearly diminished by silicic acid application, but not by DOM. The former effect probably explains the tolerance of bean plants in peat substrates where high silicon concentrations in the substrate solution were observed. Peat‐clay blends even provided up to five times more silicon to plants than pure peat.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.