Abstract

Because of the unique crystal framework, bronze TiO2 (or TiO2(B)) is considered the prospective choice for high-performance lithium-ion battery anodes. Nevertheless, TiO2(B) requires efficient modification, e.g., suitable doping with other elements, to improve the electronic properties and enhance the stability upon insertion/extraction of guest ions. However, due to the metastability of TiO2(B), doping is challenging. Herein, for the first time, TiO2(B) co-doped with Mn, F, and N were synthesized through a successive method based on a hydrothermal technique. The prepared doped TiO2(B) consists of ultrathin nanotubes (outer diameter of 10 nm, wall thickness of 2–3 nm) and exhibits a highly porous structure (pore volume of up to 1 cm3 g−1) with a large specific surface area near 200 m2 g−1. The incorporation of Mn, F, and N into TiO2(B) expands its crystal lattice and modifies its electronic structure. The band gap of TiO2(B) narrows from 3.14 to 2.18 eV upon Mn- and N-doping and electronic conductivity improves more than 40 times. Doping with fluorine improves the thermal stability of TiO2(B) and prevents its temperature-induced transformation into anatase. It was found that the diffusivity of Li is about two times faster in doped TiO2(B). These properties make Mn, F, and N co-doped TiO2(B) nanotubes promising for application as high-performance anodes in advanced lithium-ion batteries. In particular, it possesses a good reversible capacity (231.5 mAh g−1 after 100 cycles at 70 mA g−1) and prominent rate capability (134 mAh g−1 at 1500 mA g−1) in the half-cell configuration. The (Mn, F, N)-doped TiO2(B) possesses a remarkable low-temperature Li storage performance, keeping 70% of capacity at −20 °C and demonstrating potentialities to be employed in full-cell configuration with LiMn2O4 cathode delivering a reversible capacity of 123 and 79 mAh g−1 at 35 and 1500 mA g−1, respectively, at a voltage of ~2.5 V. This research underlies that regulation of electronic and crystal structure is desired to uncover capabilities of nanoparticulate TiO2(B) for electrochemical energy storage and conversion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call