Abstract

To assess infarction development in pig hearts, Mn-enhanced and Gd-enhanced MRI were used. In domestic pigs (25-35 kg, n = 37), the first and second diagonal branches of the left anterior descending coronary artery were ligated to induce acute ischemia and infarction (ischemia+reperfusion) or chronic infarction of increasing duration (3- 28 days). Ex vivo experiments were performed on hearts perfused in the Langendorff mode with a 50:50 mixture of blood and Krebs-Henseleit buffer using a spin-echo sequence on a 7 T Bruker imaging system. Signal acquisition from the heart and two reference test tubes (H(2)O and H(2)O + 10 mM CuSO(4)) was gated by the left ventricular pressure wave. T(1)-weighted images of six 8 mm short-axis slices (2 mm interslice gaps) were obtained before and after the addition of 0.2 mM MnCl(2) every 5 min over a 30-45 min period. Signal intensities were normalized to those of the H(2)O reference and fitted by a monoexponential function. The rates of intensity increase and maximal increases were significantly lower in the ischemic/infarcted areas and showed a trend to rise on infarction progression. In vivo Gd-enhanced MRI (3 T Siemens scanner) and in vivo/ex vivo near-infrared imaging confirmed major Mn-enhanced MRI findings. Triphenyltetrazolium chloride staining revealed necrotic areas in all chronic infarctions and no necrosis after acute ischemia. We conclude that MnCl(2) highlights ischemic areas because of the low collateral flow characteristic of pig hearts, whereas in the infarcted areas with substantial perfusion, scar tissue components are important for contrast distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call