Abstract

ABSTRACT Under field conditions, wheat cultivar PBW 343 produced 1.5 times higher grain yield than PDW 233, when grown on low manganese (Mn) soil. To explain the differences in Mn efficiency a pot experiment was conducted using Mn deficient Typic ustochrept loamy sand soil treated with 0, 50, and 100 mg Mn kg−1 soil. In no-Mn treatment, both the wheat cultivars showed Mn deficiency symptoms and cultivar PBW 343 produced 30% of the maximum dry matter yield (DMY) attained at high Mn supply, while PDW 233 produced only 18% of its maximum DMY after 40 days of growth. With application of 50 mg Mn kg−1 soil, the DMY significantly increased to 87% and 50% of the maximum for PBW 343 and PDW 233, respectively. These results indicate that aestivum cultivar PBW 343 was more Mn efficient than durum cultivar PDW 233. Manganese efficient cultivar PBW 343 had a lower internal Mn requirement than PDW 233 because at the same shoot Mn concentration PBW 343 produced more DMY. The root growth of both wheat cultivars was similar at sufficient Mn supply, the root length (RL) : DMY ratio being equal. At decreasing Mn supply root growth was depressed more strongly than shoot growth, the inhibition being more severe in Mn inefficient cultivar PDW 233, indicating the importance of root system size for Mn efficiency between these two wheat cultivars. A nutrient uptake model closely described Mn influx in both the cultivars, indicating that calculated concentration profiles were realistic and that chemical mobilization of Mn in the rhizosphere was not responsible for higher Mn efficiency of PBW 343. Calculated concentration profiles showed that in soil not fertilized with Mn, initial soil solution Mn concentration of 0.23 µM decreased to only 0.21 µM at the root surface after 27 days of uptake. This 7.4% decrease in Mn concentration at the root surface indicated that roots could not decrease Mn concentration to a lower value which would have caused higher transport of Mn to root surface and hence resulted in higher Mn influx.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.