Abstract

Reactive oxygen species are heavily involved in the pathogenesis of diabetes mellitus (DM) because the insulin-producing beta cells are particularly vulnerable to free-radical-mediated cytotoxicity. Catalytic anti-oxidants have been successfully applied for attenuation of DM and its consequences, but most recent research revealed that preventing the nitration of vital proteins/enzymes might be an even more powerful strategy. We now report an unprecedented efficiency of manganese(III) corroles regarding the protection of rat pancreatic beta cells against intracellular nitration by peroxynitrite and subsequent cell death. A comparison between analogous corroles and porphyrin metal complexes reveals significant superiority of the former in all examined aspects. This is particularly true for the positively-charged manganese(III) corrole, which decomposes peroxynitrite fast enough and through a unique catalytic mechanism that is devoid of potentially nitrating reaction intermediates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.