Abstract

Manganese (Mn) pollution is an important environmental problem because of the potential toxicity to human and animal health. However, the effects of Mn on energy metabolism and autophagy are not clear. Consequently, we examined the effects of excessive and chronic exposure to Mn on liver function, oxidative stress, respiratory chain complex activity, and autophagy in chicken liver. Our results indicated that the accumulation of Mn in the liver and levels of AST and ALT in the serum of the Mn-exposed group were significantly higher (P < 0.05) than those in the control group at 90 days; the activities of GSH-Px, SOD, CAT, Na+-K+-ATPase, Mg2+-ATPase, Ca2+-ATPase, and respiratory chain complexes (I, II, III) in the Mn-exposed group were significantly decreased (P < 0.05) compared to the control group. However, the MDA content, NO content, iNOS activity, mRNA and protein levels of iNOS, and autophagy-related genes in the Mn-exposed group were significantly increased (P < 0.05) compared to the control group. In contrast, the mRNA level and protein expression of mTOR were significantly decreased (P < 0.05) compared to the control group. Furthermore, the characteristic autophagic vacuolar organelles were observed in the Mn-exposed group. These results suggested that excess Mn exposure can cause a disorder of energy metabolism by mitochondrial injury and induce oxidative stress and autophagy, which eventually lead to liver damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call