Abstract

Highly efficient, selective, and direct C-H peroxidation of 9-substituted fluorenes has been achieved using a Mn-2,2'-bipyridine catalyst via radical-radical cross-coupling. Moreover, this method effectively promotes the vicinal bisperoxidation of sterically hindered various substituted arylidene-9H-fluorene/arylideneindolin-2-one derivatives to afford highly substituted bisperoxides with high selectivity over the oxidative cleavage of C═C bond that usually forms the ketone of an aldehyde. Furthermore, a new approach for the synthesis of (Z)-6-benzylidene-6H-benzo[c]chromene has been achieved via an acid-catalyzed skeletal rearrangement of these peroxides. For the first time, unlike O-O bond cleavage, reductive C-O bond cleavage in peroxides using the Pd catalyst and H2 is described, which enables the reversible reaction to afford exclusively deperoxidized products. A detailed mechanism for peroxidation, molecular rearrangement, and deperoxidation has been proposed with preliminary experimental evidences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.