Abstract

The development of catalytic reactions for synthesizing different compounds from alcohols to save fossil carbon feedstock and reduce CO2 emissions is of high importance. Replacing rare noble metals with abundantly available 3d metals is equally important. We report a manganese-complex-catalyzed multicomponent synthesis of pyrimidines from amidines and up to three alcohols. Our reaction proceeds through condensation and dehydrogenation steps, permitting selective C-C and C-N bond formations. β-Alkylation reactions are used to multiply alkylate secondary alcohols with two different primary alcohols to synthesize fully substituted pyrimidines in a one-pot process. Our PN5 P-Mn-pincer complexes efficiently catalyze this multicomponent process. A comparison of our manganese catalysts with related cobalt catalysts indicates that manganese shows a reactivity similar to that of iridium but not cobalt. This analogy could be used to develop further (de)hydrogenation reactions with manganese complexes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.