Abstract

The recently discovered cytoprotective action of CO has raised interest in exogenous CO-releasing materials (CORMs) such as metal carbonyls (CO complexes of transition metals). To achieve control on CO delivery with metal carbonyls, we synthesized and characterized three Mn(I) carbonyls, namely, [Mn(tpa)(CO)(3)]ClO(4) [1, where tpa = tris(2-pyridyl)amine], [Mn(dpa)(CO)(3)]Br [2, where dpa = N,N-bis(2-pyridylmethyl)amine], and [Mn(pqa)(CO)(3)]ClO(4) [3, where pqa = (2-pyridylmethyl)(2-quinolylmethyl)amine], by crystallography and various spectroscopic techniques. All three carbonyls are sensitive to light and release CO when illuminated with low-power UV (5-10 mW) and visible (λ > 350 nm, ~100 mW) light. The sensitivity of 1-3 to light has been assessed with respect to the number of pyridine groups in their ligand frames. When a pyridine ring is replaced with quinoline, extended conjugation in the ligand frame increases the absorptivity and makes the resulting carbonyl 3 more sensitive to visible light. These photosensitive CORMs (photoCORMs) have been employed to deliver CO to myoglobin under the control of light. The superior stability of 3 in aqueous media makes it a photoCORM suitable for inducing vasorelaxation in mouse aortic muscle rings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.