Abstract
Streams below mountaintop removal-valley fill coal mining operations often have elevated Mn concentrations, but it remains unclear if Mn plays a role in biodiversity reduction. We examined various aspects of aqueous Mn interactions with aquatic insects exposed to environmentally relevant Mn concentrations, revealing complex behavior. First, Mn accumulation rates varied widely among 9 species. A significant percentage of total Mn accrued (mean 74%, range 24-95%) was associated with the cuticle, predominantly in the form of Mn-oxides, and to a lesser degree Mn(II). Mn II is also absorbed into tissues, possibly through calcium transporters. Increased ambient calcium concentrations decreased both adsorbed and absorbed Mn accumulation from solution. Though species showed similar Mn efflux rate constants (0.032-0.072 d(-1)), the primary mode of Mn loss was through molting. Both adsorbed and absorbed Mn is lost during the molt. Subcellular compartmentalization studies revealed an overwhelming tendency for internalized Mn to associate with the heat stable cytosolic protein fraction. After short dissolved Mn exposures, intracellular glutathione and cysteine levels were markedly reduced relative to controls. These findings suggest that Mn exposure results in transient physiological stress in aquatic insects which is likely relieved, in part, during the molting process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.