Abstract

Understanding the deactivation mechanism of cobalt-based Fischer-Tropsch catalysts is of significant practical importance. Herein, we explored the role of manganese as a structural promoter on silica-supported cobalt nanoparticles under simulated high CO conversion conditions, i.e., high relative humidity. The structural changes in cobalt dispersion and oxidation state were followed by in situ Mössbauer emission spectroscopy. Adding manganese oxide to silica-supported cobalt enhanced the dispersion of metallic cobalt in the reduced catalysts. This higher cobalt dispersion, however, led to a stronger tendency of cobalt silicate formation under humid conditions. Without manganese, the cobalt particles sintered, and the larger ones were prone to transformation into cobalt carbide under high conversion conditions. As such, silica is not preferred as a support for practical FTS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call