Abstract

New calcium borovanadate glass containing manganese ions within the system x Mn2O3-(30-x) V2O5-50 B2O3-20 CaO has been elaborated* in this work using melt quench process. The primary objective of this research is to examine the influence of introducing Mn2O3 upon the various properties of the elaborated glass specimens including physical, thermal, structural, optical and magnetic properties. X-ray diffraction indicated that the samples prepared were amorphous. The variation in density and molar volume revealed that the structure of the glass matrix cross-links and becomes more compact with increasing Mn2O3 content, which is confirmed when the glass transition temperature is increased. Furthermore, in order to check the group constitution of our glasses, a structural study was carried out using infrared (FTIR) and Raman spectroscopy. The optical characteristics of our vitreous materials were analyzed by UV solid, and the results of the band gap energy and refractive index values revealed an enhancement of non-bridging oxygen atoms (NBOs) with rising Mn2O3 concentration, also suggests that manganese acts as a structure modifier. The low Urbach energy values are an indication that the structure of our glasses is stable and uniform. The magnetic investigation highlighted the presence of the predominant antiferromagnetic order in the glass samples studied, which becomes stronger with the incorporation of more manganese ions into the structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call