Abstract

BackgroundEndoplasmic reticulum (ER) stress-induced nerve cell damage has been known to be a hallmark feature of Mn-induced parkinsonism pathogenesis. However, several compensatory machineries, such as unfolded protein response (UPR), autophagy, and immune response, play an essential role in this damage, and the underlying molecular mechanisms are poorly understood. MethodsNeurobehavioral impairment was assessed using catwalk gait analysis and open field test. RNA-seq analyzed the differentially expressed genes (DEGs). TUNEL staining and immunohistochemical analysis evaluated the nerve cells apoptosis and microglial cell activation. Flow cytometry assay measured microglia M1/M2 polarization. Western blotting measured protein expression. Immunofluorescence staining was used to observe the target molecules' subcellular localization. ResultsThe study revealed that Mn caused a reduction in motor capacity, nerve cell apoptosis, and microglia activation with an imbalance in M1/M2 polarization, coupled with NF-κB signaling and PERK signaling activation. 4-PBA pretreatment could counteract these effects, while 3-MA administration exacerbated them. Additionally, autophagy could be activated by Mn. This activation could be further upregulated by 4-PBA pretreatment, whereas it was suppressed under 3-MA administration. Mn also decreased inactive GSK-3β, increased STAT3 signaling activation, and increased colocalization of GSK-3β and STAT3. These effects were strengthened by 4-PBA pretreatment, while 3-MA administration reversed them. DiscussionThis study suggests that autophagy and M2 microglia polarization might be protective in Mn-induced ER stress damage, possibly through GSK-3β-ULK1 autophagy signaling and STAT3 signaling activation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.