Abstract

We present manganese abundances in 10 red giant members of the globular cluster {omega} Centauri; eight stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal-rich groups (RGB MInt2 and MInt3). This is the first time Mn abundances have been studied in this peculiar stellar system. The LTE values of [Mn/Fe] in {omega} Cen overlap those of Milky Way stars in the metal-poor {omega} Cen populations ([Fe/H] {approx}-1.5 to -1.8), however unlike what is observed in Milky Way halo and disk stars, [Mn/Fe] declines in the two more metal-rich RGB MInt2 and MInt3 targets. Non-LTE calculations were carried out in order to derive corrections to the LTE Mn abundances. The non-LTE results for {omega} Cen in comparison with the non-LTE [Mn/Fe] versus [Fe/H] trend obtained for the Milky Way confirm and strengthen the conclusion that the manganese behavior in {omega} Cen is distinct. These results suggest that low-metallicity supernovae (with metallicities {<=} -2) of either Type II or Type Ia dominated the enrichment of the more metal-rich stars in {omega} Cen. The dominance of low-metallicity stars in the chemical evolution of {omega} Cen has been noted previously in themore » s-process elements where enrichment from metal-poor asymptotic giant branch stars is indicated. In addition, copper, which also has metallicity-dependent yields, exhibits lower values of [Cu/Fe] in the RGB MInt2 and MInt3 {omega} Cen populations.« less

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call