Abstract

The purpose of this study is to develop maneuvering models and systems of a simulator to improve the motion performance of autonomous underwater vehicles (AUVs) at the preliminary design stages in advance. The AUVs simulation systems based on the standard submarine equations of motion in six-degree-of-freedom (6-DOF) integrated with the Euler-Rodriguez quaternion method for representing singularity-free AUV attitude and time-saving calculation, and with a nonlinear control model for maneuvering and depth control simulations, time-marching in the fourth-order Runge-Kutta scheme. For validation of the simulation codes, results of the ISiMI AUV open-loop tests including turning test and zigzag test as well as an AUV simulator on the basis of Euler-angle method were used to compare with the quaternion-based AUV simulator. The computational results from the proposed simulator agree well with those from both the ISiMI AUV experiments and the Euler-angle based simulations. Additionally, a new maneuvering procedure, namely “put-out” was implemented to test directional stability for a large-scale AUV in the proposed AUV simulator that can be considered for vehicles in space as well as in constrained planes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.