Abstract
Translating the performance of covalent organic frameworks (COFs) from laboratory to macroscopic reality demands specific morphologies. Thus, the advancement in morphological modulation has recently gained some momentum. A clear understanding of nano- to macroscopic architecture is critical to determine, optimize, and improve performances of this atomically precise porous material. Along with their chemical compositions and molecular frameworks, the prospect of morphology in various applications should be discussed and highlighted. A thorough insight into morphology versus application will help produce better-engineered COFs for practical implications. 2D and 3D frameworks can be transformed into various solids such as nanospheres, thin films, membranes, monoliths, foams, etc., for numerous applications in adsorption, separation photocatalysis, the carbon dioxide reduction, supercapacitors, and fuel cells. However, the research on COF chemistry mainly focuses on correlating structure to property, structure to morphology, and structure to applications. Here, critical insights on various morphological evolution and associated applications are provided. In each case, the underlying role of morphology is unveiled. Toward the end, a correlation between morphology and application is provided for the future development of COFs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.