Abstract

This work presents an approach for maneuvering and controlling a biomimetic autonomous underwater vehicle (BAUV). The BAUV swims forward by oscillating its body and caudal fin. It turns by bending its body and caudal fin toward the intended direction of motion. A body-spline function is specified by a set of parameters. Genetic algorithms are then used to find the values of the parameter by evaluating a fitness function over several swimming trials in a water tank. The fitness function is defined as the ratio of the kinetic energy of the forward motion to the required driving power of the joint motors. A control law that uses the oscillating frequency to control the forward speed, and applies a body-spline offset parameter to control the yawing rate is proposed. Moving averages of swimming speeds and heading angles are utilized as feedback signals to control the forward speed and heading angle of the BAUV. The effectiveness of the control algorithm is experimentally confirmed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.