Abstract
Forecasting the motion of surrounding vehicles is necessary for a self-driving vehicle to plan a safe and efficient trajectory for the future. Like experienced human drivers, the self-driving vehicle needs to perceive the interaction of surrounding vehicles and decide the best trajectory from many choices. However, previous methods either lack modeling of interactions or ignore the multi-modal nature of this problem. In this paper, we focus on two important cues of trajectory prediction: interaction and maneuver, and propose Maneuver conditioned Attentional Network named MAN. MAN learns the interactions of all vehicles in a scenario in parallel by self-attention social pooling and the attentional decoder generates the future trajectory conditioned on the predicted maneuver among 3 classes: Lane Changing Left (LCL), Lane Changing Right (LCR) and Lane Keeping (LK). Experiments demonstrate the improvement of our model in prediction on the publicly available NGSIM and HighD datasets. We also present quantitative analysis to study the relationship between maneuver prediction accuracy and trajectory error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computational Intelligence and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.