Abstract

A novel reaction, catalyzed by Manduca sexta lipid transfer particle (LTP), transforms low density lipophorin (LDLp) into two distinct lipoprotein species. A population of LDLp particles serves as lipid donor or acceptor in LTP-catalyzed production of a very low density lipophorin (VLDLp) and a high density lipophorin (HDLp) product. The products result from facilitated net transfer of lipid mass from donor LDLp particles to acceptor LDLp particles. Transfer of apolipophorin III (apoLp-III) from donor to acceptor lipoprotein occurs during the reaction to produce a lipid- and apoLp-III-enriched VLDLp species and lipid- and apoLp-III-depleted HDLp species. The VLDLp produced in this in vitro reaction contains more lipid and apoLp-III than any previous lipophorin species reported and further demonstrates the scope of the lipid binding capacity of lipophorin. Lipid analysis and radiolabeling studies confirmed that unidirectional net transfer of lipid mass and apoLp-III from donor to acceptor occurs. When 3H-lipid-LDLp was used as substrate in the LTP-catalyzed disproportionation reaction the density distribution of radioactivity and protein provided evidence of vectorial transfer of diacylglycerol, phospholipid, and free fatty acids. Electron micrographs of the original LDLp population and of the LTP-induced product lipoprotein population provided further support for the interpretation derived from biochemical studies. This LTP-catalyzed disproportionation was observed only with apoLp-III-rich LDLp suggesting that the presence of increased amounts of this apoprotein dramatically affects the properties of the particle and appears to be directly related to the capacity of the lipoprotein to bind lipid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.