Abstract

Bone morphogenetic protein-2 (BMP-2) is a human recombinant bone-inducing factor that stimulates bone formation within 14 days. Twenty-six dogs underwent reconstruction of 3-cm full-thickness mandibular defects. After stabilizing the defects with stainless steel reconstruction plates, test implants composed of inactive dog bone matrix carrier and human recombinant BMP-2 were placed in defects of 12 animals (group 1). Control implants (carrier without BMP-2) were used in 10 animals (group 2), and no implants were placed in mandibular defects of four animals (group 3). Animals were killed at 3 and 6 months. The reconstructed segments were evaluated by roentgenography, analysis of functional stability, histology, histomorphometry, and analysis of biomechanical strength using three-point bend testing. In group 1, reconstruction plates were removed at 10 weeks because stiff, noncompressible mineralized bone formed across the defects, allowing the animals to chew a solid diet. The defects from groups 2 and 3 showed minimal, if any, bone formation and remained grossly unstable, prohibiting plate removal or advancement to a solid diet. Histomorphometric analysis at 6 months revealed that 68% of the group 1 implants were replaced by mineralized bone, whereas mineralized bone occupied less than 4% of the implants in groups 2 and 3. Biomechanical testing at 6 months revealed that the average bending strength of the reconstructed hemimandibles (expressed as a percentage of the contralateral hemimandible) was 27% for group 1 and 0% for group 2. The biomechanical strength of the defects reconstructed with BMP-2 increased significantly from 3 to 6 months and was related to degree of mineralization and thickness of bone bridging the defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.