Abstract

Mandibular reconstitution with bioabsorbable scaffolds seems feasible with the application of 3-dimensional printing combined with bioactive proteins. As yet, previous studies have been limited in number of animals and have avoided a contaminated defect. We present a caprine model of mandibular defect bone regeneration with a 3-dimensionally printed bioabsorbable scaffold contaminated with oral secretions and explore the impact of bone morphogenic protein in mandibular bone reconstitution. A 3-cm, contaminated mandibular defect was generated in 18 goats and stabilized with 2 mandibular reconstruction plates. An uncoated scaffold was placed in 6 goats, and in the final 6 goats, the scaffold was coated with bone morphogenic protein-2. In 6 goats, the defect was left empty. After 12weeks, the operative site, scaffold, and adjacent mandible were plasticized, sectioned, and evaluated histologically to assess for bone regeneration. The specimens revealed only focal (average of 5.8% of the scaffold pores) and early bone formation in the scaffold-only group. In the scaffold+bone morphogenic protein-2 group, there was more (average of 51.4% of the pores) bone formation. In the periosteum-only group, the ratio of the bone thickness of the defect to that of the normal bone ranged from 0.16 to 0.78. No major infections occurred. This caprine model serves as an excellent method to assess reconstructive options for contaminated mandibular deficits. Bone regeneration was documented in a 3-cm contaminated caprine mandibular defect reconstructed with a 3-dimensionally printed synthetic scaffold with or without the addition of bone morphogenic protein-2. Bone morphogenic protein-2 significantly augments bone generation in the synthetic scaffold. Residual mandibular periosteum generated bone. Future studies will focus on optimizing vascularization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.