Abstract

Animals use a variety of escape mechanisms to increase the probability of surviving predatory attacks. Antipredator defenses can be elaborate, making their evolutionary origin unclear. Trap-jaw ants are known for their rapid and powerful predatory mandible strikes, and some species have been observed to direct those strikes at the substrate, thereby launching themselves into the air away from a potential threat. This potential escape mechanism has never been examined in a natural context. We studied the use of mandible-powered jumping in Odontomachus brunneus during their interactions with a common ant predator: pit-building antlions. We observed that while trap-jaw ant workers escaped from antlion pits by running in about half of interactions, in 15% of interactions they escaped by mandible-powered jumping. To test whether escape jumps improved individual survival, we experimentally prevented workers from jumping and measured their escape rate. Workers with unrestrained mandibles escaped from antlion pits significantly more frequently than workers with restrained mandibles. Our results indicate that some trap-jaw ant species can use mandible-powered jumps to escape from common predators. These results also provide a charismatic example of evolutionary co-option, where a trait that evolved for one function (predation) has been co-opted for another (defense).

Highlights

  • The significance of predation in animal evolution is reflected in the diversity of strategies that prey employ to avoid it

  • Twenty nests of Odontomachus brunneus were excavated from scrub habitat and pastures at Archbold Biological Station (ABS) and the MacArthur Agro-ecology Research Center (MAERC), both located at the southern end of the Lake Wales Ridge in central Florida

  • When Odontomachus brunneus workers fell into antlion pits, they were captured approximately one-third of the time (S1 Video)

Read more

Summary

Introduction

The significance of predation in animal evolution is reflected in the diversity of strategies that prey employ to avoid it. Antipredator adaptations, such as crypsis, mimicry, chemical defense, or escape behaviors, each derail a specific stage of the predation sequence [1, 2]. Escape jumps and defensive maneuvers, for example, increase the likelihood of prey survival after a predatory attack has been initiated using some combination of rapid acceleration and unpredictable movement. Examples of escape behaviors and protean defenses include some of the most dramatic and metabolically demanding animal behaviors, such as escape jumps in grasshoppers. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.