Abstract
Background: Indoles and various indolyl derivatives are very common in naturally occurring biologically active compounds. Many methods are being developed for the synthesis of various bioactive indole derivatives. Objective: Synthesis of biologically promising structurally diverse indole derivatives under mild and environmentally benign conditions. Methods: Synthesis of 3-hydroxy-3-(5-(trifluoromethoxy)-1H-indol-3-yl)indolin-2-one was achieved by the reaction of an equimolar mixture of isatin and 3-(trifluoromethoxy)-1H-indol using 20 mol% of mandelic acid as catalyst in aqueous ethanol at room temperature. Under the same optimized reaction conditions, synthesis of 3-(3-hydroxy-2-oxoindolin-3-yl)chroman-2,4-diones was accomplished via the reactions of substituted isatins and 4-hydroxycoumarin. On the other hand, 2-hydroxy-2-(indol-3-yl)- indene-1,3-diones and 10-hydroxy-10-(5-methoxy-1H-indol-3- yl)phenanthren-9(10H)-one were synthesized from the reactions of indoles and ninhydrin or 9,10-phenanthrenequinone respectively using the same 20 mol% of mandelic acid as an efficient organo-catalyst in aqueous ethanol at room temperature. Results: Mild, safe and clean reaction profiles, energy efficiency, high atom-economy, use of naturally occurring non-toxic organo-catalyst, easy isolation procedure by avoiding column chromatographic purification and gram scale production are some the major advantages of this developed protocol. Conclusion: A simple, straightforward and eco-friendly protocol has been developed for the efficient synthesis of biologically promising novel 3-hydroxy-3-(5-(trifluoromethoxy)-1H-indol- 3-yl)indolin-2- one, 3-(3-hydroxy-2-oxoindolin-3-yl)chroman-2,4-diones, 2-hydroxy-2-(indol-3- yl)-indene-1,3-diones and 10-hydroxy-10-(5-methoxy-1H-indol-3-yl)phenanthren-9(10H)-one using a catalytic amount of mandelic acid in aqueous ethanol at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.