Abstract

Modern computing platforms are increasingly complex, with multiple cores, shared caches, and NUMA architectures. Parallel applications developers have to take locality into account before they can expect good efficiency on these platforms. Thus there is a strong need for a portable tool gathering and exposing this information. The Hardware Locality project (hwloc) offers a tree representation of the hardware based on the inclusion and localities of the CPU and memory resources. It is already widely used for affinity-based task placement in high performance computing. In this article we present how hwloc is extended to describe more than computing and memory resources. Indeed, I/O device locality is becoming another important aspect of locality since high performance GPUs, network or InfiniBand interfaces possess privileged access to some of the cores and memory banks. hwloc integrates this knowledge into its topology representation and offers an interoperability API to extend existing libraries such as CUDA with locality information. We also describe how hwloc now helps process managers and batch schedulers to deal with the topology of multiple cluster nodes, together with compression for better scalability up to thousands of nodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.