Abstract

In general, databases store current data. However,the capability to maintain temporal data is a crucial requirement for many organizations and provides the base for organizational intelligence. A temporal database maintains time-varying data, that is, past, present, and future data. In this chapter, we focus on the relational data model and address the subtle issues in modeling and designing temporal databases. A common approach to handle temporal data within the traditional relational databases is the addition of time columns to a relation. Though this appears to be a simple and intuitive solution, it does not address many subtle issues peculiar to temporal data, that is, comparing database states at two different time points, capturing the periods for concurrent events and accessing times beyond these periods, handling multi-valued attributes, coalescing and restructuring temporal data, and so forth, [Gadia 1988, Tansel and Tin 1997]. There is a growing interest in temporal databases. A first book dedicated to temporal databases [Tansel at al 1993] followed by others addressing issues in handling time-varying data [Betini, Jajodia and Wang 1988, Date, Darwen and Lorentzos 2002, Snodgrass 1999].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.