Abstract

A simulation methodology, which trades space complexity with time complexity, to create the Hopfield neural network weight matrix, the costliest data structure for simulation of Hopfield neural network algorithm for large-scale optimization problems, is proposed. Modular composition of a weight term of the Hopfield neural network weight matrix for a generic static optimization problem, which facilitates construction and reconstruction of the weights on demand during a simulation, is exposed. Proposed methodology is demonstrated on a static combinatorial optimization problem, namely the Traveling Salesman Problem (TSP), through the algebraic procedure for temporal (versus spatial) weight matrix construction, pseudo code and C/C++ code implementation, and an associated simulation study. The proposed methodology is successfully tested through simulation on a general purpose Windows™-AMD™ platform for up to 1000 city Traveling Salesman Problem instance, which would require approximately no less than 1TB of memory to be allocated simply to instantiate the weight matrix in the memory space of the simulation process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.