Abstract

Relative sea-level rise will affect vulnerable coastal communities globally. Quantifying this effect on the coastal environment and infrastructure provides critical information that enables coastal managers to develop sustainable mitigation and adaptation measures. Modeling applications have enabled the past, present, and future trends in shoreline morphology to be investigated in detail. Predictive numerical models depend largely on the reliability of the input data. This article reports on using the Soft Cliff and Platform Erosion (SCAPE) numerical model to simulate future shoreline evolution trend in the central Accra coast in Ghana. The model input parameters include historic shoreline recession rates, wave data, tidal data, bathymetry, beach volume, beach topography, historic relative sea-level rise rates, and the shoreline orientation. The data fed the SCAPE numerical model which simulated the emergence of soft rock shore profiles over timescale of decades to centuries, to project future positions of the central Accra shoreline for the next 100 years under different scenarios of climate change. Simulated future shoreline positions overlaid on a 2005 orthophoto map of Accra enabled vulnerable areas and infrastructure at risk to be identified. It emerged that a highly populated community in central Accra will be inundated by 2065, while the Rivera beach resort will be eroded from 2035. A natural fish landing site in Osu (suburb in Accra) will be lost from 2045. The study has demonstrated that considerable ecological, economic, social, and national losses should be expected within the next century. Shoreline change management options should be explored to help mitigate the expected impact of the sea-level rise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call