Abstract
Pb-related imperfections (surface or halide vacancy induced uncoordinated Pb2+, Pb-I antisite, and Pb2+ vacancy defects) of the ionic crystal perovskite film seriously restrict the photovoltaic performance of perovskite solar cells (PSCs). Here, an aniline derivative N-(4-cyanophenyl)acetamide (CAL) is rationally designed, incorporating bilateral functional sites of cyano and acetyl groups, acting as Lewis base molecule for managing the Pb-related imperfections in perovskite surface through post-treatment. Theoretical calculation and experimental verification together proved the reduced defect density, improved crystallinity, and inhibited ion migration in the CAL-modified perovskite. Precisely, cyano as a side group and acetyl as another side group can both coordinate with Pb2+ for its low electrostatic potential energy. Further, the aniline core and the π-π conjugate structure in the benzene ring of the ligand tend to form a dimer to improve the mobility for carrier transportation and collection. The strategy demonstrates a champion PCE of 24.35% for the air-processed PSCs with over 1200 hours of maximum power point tracking (MPPT) stability. This study presents a comprehensive approach to overcoming the current Pb-related imperfections induced limitations in PSCs, paving the way for their integration into mainstream solar technologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.