Abstract
Water is a limited and invaluable resource that is essential for human survival. Negligence and unregulated water use have brought about a global water crisis. Proper management with a relevant decision and information integration approach can aid water to continue as a renewable resource. The water and wastewater industry must shift from outmoded, inefficient techniques to more sustainable, data-driven solutions to address water concerns and improve public health. The Internet of Things (IoT) has emerged as an innovative strategy for decision and information integration to drive an open-loop Water Value Chain (WVC) efficiently. The IoT-driven network allows objects to connect and communicate, gather data in real-time, analyze data and develop reasonable decision – making insights instantaneously. This study aims to find the enablers of IoT for an open-loop WVC. It examines 25 factors for IoT implementation in the open-loop WVC. The 25 factors are clustered into seven enablers using Principal Component Analysis (PCA). These principal components are analyzed by employing a Multi-Criteria Decision Making (MCDM) approach, i.e., the Fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL), which helps to find the cause-effect relationship to prioritize the enablers. The fuzzy set theory is used to address the uncertainty and vagueness in experts' opinions and data deficiency problems. The study reveals that the Ecosystem of an IoT network, IoT network configuration and adaptation and data mobility in an IoT network are the most prominent enablers to consider for the implementation of IoT in an open loop WVC. The study may be helpful for regulatory agencies and enterprises in water distribution and processing for identifying and prioritizing the potential enablers of IoT in an open-loop WVC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.