Abstract
The inherent uncertainty in supply chain systems compels managers to be more perceptive to the stochastic nature of the systems' major parameters, such as suppliers' reliability, retailers' demands, and facility production capacities. To deal with the uncertainty inherent to the parameters of the stochastic supply chain optimization problems and to determine optimal or close to optimal policies, many approximate deterministic equivalent models are proposed. In this paper, we consider the stochastic periodic inventory routing problem modeled as chance-constrained optimization problem. We then propose a safety stock-based deterministic optimization model to determine near-optimal solutions to this chance-constrained optimization problem. We investigate the issue of adequately setting safety stocks at the supplier's warehouse and at the retailers so that the promised service levels to the retailers are guaranteed, while distribution costs as well as inventory throughout the system are optimized. The proposed deterministic models strive to optimize the safety stock levels in line with the planned service levels at the retailers. Different safety stock models are investigated and analyzed, and the results are illustrated on two comprehensively worked out cases. We conclude this analysis with some insights on how safety stocks are to be determined, allocated, and coordinated in stochastic periodic inventory routing problem. Copyright © 2017 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applied Stochastic Models in Business and Industry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.