Abstract
Interfacial nonradiative recombination loss is a huge barrier to advance the photovoltaic performance. Here, one effective interfacial defect and carrier dynamics management strategy by synergistic modulation of functional groups and spatial conformation of ammonium salt molecules is proposed. The surface treatment with 3-ammonium propionic acid iodide (3-APAI) does not form 2D perovskite passivation layer while the propylammonium ions and 5-aminopentanoic acid hydroiodide post-treatment lead to the formation of 2D perovskite passivation layers. Due to appropriate alkyl chain length, theoretical and experimental results manifest that COOH and NH3 + groups in 3-APAI molecules can form coordination bonding with undercoordinated Pb2+ and ionic bonding and hydrogen bonding with octahedron PbI6 4- , respectively, which makes both groups be simultaneously firmly anchored on the surface of perovskite films. This will strengthen defect passivation effect and improve interfacial carrier transport and transfer. The synergistic effect of functional groups and spatial conformation confers 3-APAI better defect passivation effect than 2D perovskite layers. The 3-APAI-modified device based on vacuum flash technology achieves an alluring peak efficiency of 24.72% (certified 23.68%), which is among highly efficient devices fabricated without antisolvents. Furthermore, the encapsulated 3-APAI-modified device degrades by less than 4% after 1400h of continuous one sun illumination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.