Abstract
In many emerging economies, callers may abandon ambulance requests due to a combination of operational (small fleet size), infrastructural (long travel times) and behavioral factors (low trust in the ambulance system). As a result, ambulance capacity, which is already scarce, is wasted in serving calls that are likely to be abandoned later. In this article, we investigate the design of an ambulance system in the presence of abandonment behavior, using a two-step approach. First, because the callers’ actual willingness to wait for ambulances is censored, we adopt a Maximum Likelihood Estimator estimation approach suitable for interval censored data. Second, we employ a simulation-based optimization approach to explicitly incorporate customers’ willingness to wait in: (i) tactical short-term decisions such as modification of dispatch policies and ambulance allocations at existing base locations; and (ii) strategic long-term network design decisions of increasing fleet size and re-designing base locations. We calibrate our models using data from a major metropolitan city in India where historically 81.3% of calls were successfully served without being abandoned. We find that modifying dispatch policies or reallocating ambulances provide relatively small gains in successfully served calls (around 1%). By contrast, increasing fleet size and network re-design can more significantly increase the fraction of successfully served calls with the latter being particularly more effective. Redesigning bases with the current fleet size is equivalent to increasing the fleet size by 8.6% at current base locations. Similarly, adding 29% more ambulances and redesigning the base locations is equivalent to doubling the fleet size at the current base locations and adding 34% more ambulances and redesigning base locations is equivalent to a three-fold increase. Our results indicate that in the absence of changes in behavioral factors, significant investment is required to modify operational factors by increasing fleet size, and to modify infrastructural factors by redesigning base locations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.