Abstract

A continuous k nearest neighbor (CKNN) query retrieves the set of k mobile nodes that are nearest to a query point, and provides real-time updates whenever this set of nodes changes. A CKNN query can be either stationary or mobile, depending on the mobility of its query point. Efficient processing of CKNN queries is essential to many applications, yet most existing techniques assume a centralized system, where one or more central servers are used for query management. In this thesis, we assume a fully distributed mobile peer-to-peer system, where mobile nodes are the only computing devices, and present a unified platform for efficient processing of both stationary and mobile CKNN queries. For each query, our technique computes a set of safe boundaries and lets mobile nodes monitor their movement with respect to these boundaries. We show that the result of a query does not change unless a node crosses over a safe boundary. As such, our technique requires a query to be re-evaluated only when there is a crossing event, thus minimizing the cost of query evaluation. For performance study, we model the communication cost incurred in query processing with a detailed mathematical analysis and verify its accuracy using simulation. Our extensive study shows that the proposed technique is able to provide real-time and accurate query results with a reasonable cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call