Abstract

This paper proposes a framework for contingency management using smart loads, which are realized through the emerging paradigm of the Internet of things. The framework involves the system operator, the load serving entities (LSEs), and the end-users with smart home management systems that automatically control adjustable loads. The system operator uses an efficient linear equation solver to quickly calculate the load curtailment needed at each bus to relieve congested lines after a contingency. Given this curtailment request, an LSE calculates a power allowance for each of its end-use customers to maximize the aggregate user utility. This large-scale NP-hard problem is approximated to a convex optimization for efficient computation. A smart home management system determines the appliances allowed to be used in order to maximize the user’s utility within the power allowance given by the LSE. Since the user’s utility depends on the near-future usage of the appliances, the framework provides the Welch-based reactive appliance prediction (WRAP) algorithm to predict the user behavior and maximize utility. The proposed framework is validated using the New England 39-bus test system. The results show that power system components at risk can be quickly alleviated by adjusting a large number of small smart loads. Additionally, WRAP accurately predicts the users’ future behavior, minimizing the impact on the aggregate users’ utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.