Abstract

In a multireservoir system, ensuring adequate water availability while managing conflicting goals is critical to making the social–ecological system sustainable in the presence of considerable uncertainty. The priorities of multiple user groups and availability of the water resource vary with time, weather, and other factors. Uncertainties such as variations in precipitation can intensify the discrepancies between water supply and water demand. To reduce such discrepancies, we seek to satisfice conflicting goals, considering typical uncertainties. We observe that models are incomplete and inaccurate, which calls into question using a single point solution and suggests the need for solutions, which are robust to uncertainties. So, we explore satisficing solutions that are relatively insensitive to uncertainties, by incorporating different design preferences, identifying sensitive segments, and improving the design accordingly. In this article, we present an example of the exploration of the solution space to enhance sustainability in multidisciplinary systems, when goals conflict, preferences are evolving, and uncertainties add complexity, which can be applied in mechanical design. In this paper, we focus on the method rather than the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call