Abstract

We consider a two-stage serial supply chain with capacity limits, where each installation is operated by managers attempting to minimize their own costs. A multiple-period model is necessitated by the multiple stages, capacity limits, stochastic demand, and the explicit consideration of inventories. With appropriate salvage value functions, a Markov equilibrium policy is found. Intuitive profit dominance allows for existence of a unique equilibrium solution, which is shown to be a modified echelon base-stock policy. This equilibrium policy structure is sustained in the infinite horizon. A numerical study compares the behavior of the decentralized system with the first-best integrated capacitated system. The performance of this decentralized system relative to the integrated system across other parameters can be very good over a broad range of values. This implies that an acceptable system performance may be attained without the imposition of a contract or other coordinating mechanism, which themselves may encounter difficulties in implementation in the form of negotiation, execution, or enforcement of these agreements. We find instances where tighter capacities may actually enhance channel efficiency. We also examine the effect of capacity utilization on the system suboptimality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.