Abstract
Membrane filtration can provide a significant role in the management of waste streams from food manufacturing operations. The objective of this research was to evaluate the reductions in the organic content of waste streams accomplished when using membrane filtration. Reductions in Chemical Oxygen Demand (COD) by membrane filtration were compared to a Dissolved Air Floatation (DAF) system. Membranes with six different pore sizes (200, 20, 8, 4, 0.083, and 0.058 kDa) were evaluated. In addition, the various membrane treatments were applied after the DAF as an additional level of comparison. The DAF treatment provided 75.15 ± 3.95% reduction in COD, and the reduction in COD improved from 85% to 99% as the membrane pore size decreased. When all membranes were used after a DAF pre-treatment, a reduction in COD to less than 1200 ppm in the permeate stream was achieved. These reductions were independent of the COD in the feed stream. The membrane fouling rates were evaluated for the membranes with the four largest pore-sizes membranes. The membranes with 20 kDa pore-size had the lowest fouling rates during extended fouling-rate studies.
Highlights
Dairy industries consume huge amounts of water, accounting for 33.96% of water consumption in all food industries [1]
Dairy wastewaters are characterized by high chemical oxygen demand (COD) due to high organic content caused by the presence of fats, proteins and carbohydrates [4]
The heterogeneity in the feed is seen in terms of standard deviation, and it depends on the moment at which the samples are taken
Summary
Dairy industries consume huge amounts of water, accounting for 33.96% of water consumption in all food industries [1]. Examples include; as an ingredient, in clean in place (CIP), as boiler feed, in cooling tower operation, etc Among these operations, CIP accounts for 38% of the total water consumption in the dairy industry [2]. Dairy wastewaters are characterized by high chemical oxygen demand (COD) due to high organic content caused by the presence of fats, proteins and carbohydrates [4]. This high nutrient content in the dairy wastewater is due to dumping dairy products down the drain and cleaning processed equipment and pipes [5,6]. When the highly nutritive effluent from the dairy industry is not treated and dumped into rivers, it causes eutrophication by organic, nitrogen and phosphorous compounds [7,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.