Abstract

The aim of this in vitro study is to compare the microleakage of a root perforation sealed with MTA (mineral trioxide aggregate) (group M) to that sealed with MTA following Er:YAG laser irradiation (group ML). Forty-two recently extracted human monoroot teeth were used. Two cavities were prepared on each root surface. Randomly, on each root, the exposed dentine of one cavity was irradiated prior to MTA filling using an Er:YAG laser with the following settings: 200 mJ/pulses under an air water spray, 10 Hz, pulse duration of 50 μsec, and 0.7 mm beam diameter. All cavities were then sealed with MTA. submitted to thermocycling and immersed in 2% methylene blue dye solution for 12 h. The penetration of methylene blue in the microleakage of cavity was observed and recorded. The mean value dye penetration in cavities sealed with MTA following Er:YAG laser irradiation (23.91 ± 14.63%) was lower than that of unlased cavities sealed only with MTA (25.17 ± 17.53%). No significant difference was noted. The use of an Er:YAG laser beam for dentinal conditioning prior to MTA filling of perforated roots did not decrease significantly the microleakage of MTA sealing when compared to the conventional use of MTA filling.

Highlights

  • Root perforations connect root canal spaces with periodontal tissues

  • The mean value and standard deviation of the percentage of dye penetration in the group of cavities filled with Mineral trioxide aggregate (MTA) following Er:YAG laser irradiation was 23.91 ± 14.63% (Figure 2)

  • The difference between the percentage of dye penetration in cavities sealed with MTA that in those sealed with MTA following Er:YAG laser irradiation was not statistically significant

Read more

Summary

Introduction

The connection may occur as a result of iatrogenic causes during root canal treatment (at the level of the floor of the cameral cavity or at different levels of the root) or during prosthetic treatment for postcanal penetration. It may be inducted by external root resorption or by the caries process. Prognoses for perforated roots depend on the time lapsed before the perforation is sealed, the localization and size of the perforation, and the quality of the sealing material used. MTA is commonly accepted as the best choice for root perforation treatment

Objectives
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.