Abstract
PurposeWe present a Health Care System (HCS) based on integrated learning to achieve high-efficiency and high-precision integration of medical and health big data, and compared it with an internet-based integrated system. MethodThe method proposed in this paper adopts the Bagging integrated learning method and the Extreme Learning Machine (ELM) prediction model to obtain a high-precision strong learning model. In order to verify the integration efficiency of the system, we compare it with the Internet-based health big data integration system in terms of integration volume, integration efficiency, and storage space capacity. ResultsThe HCS based on integrated learning relies on the Internet in terms of integration volume, integration efficiency, and storage space capacity. The amount of integration is proportional to the time and the integration time is between 170-450 ms, which is only half of the comparison system; whereby the storage space capacity reaches 8.3×28TB. ConclusionThe experimental results show that the integrated learning-based HCS integrates medical and health big data with high integration volume and integration efficiency, and has high space storage capacity and concurrent data processing performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.