Abstract
The explorative and iterative nature of developing and operating ML applications leads to a variety of artifacts, such as datasets, features, models, hyperparameters, metrics, software, configurations, and logs. In order to enable comparability, reproducibility, and traceability of these artifacts across the ML lifecycle steps and iterations, systems and tools have been developed to support their collection, storage, and management. It is often not obvious what precise functional scope such systems offer so that the comparison and the estimation of synergy effects between candidates are quite challenging. In this paper, we aim to give an overview of systems and platforms which support the management of ML lifecycle artifacts. Based on a systematic literature review, we derive assessment criteria and apply them to a representative selection of more than 60 systems and platforms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.