Abstract

Insect outbreaks often occur in the absence of natural enemies and in the presence of excess suitable host materials. Outbreaks of gypsy moths are especially problematic in remote areas located in high-latitude regions in Japan because the majority of adults emerge during the short summer season and initiate synchronous mass flight toward artificial lights. The aggregation of moths in public facilities not only is an annoyance to visitors but also permits the establishment of new populations the following year. The aim of this study was to establish a method to reduce the numbers of large moths that are attracted to lights in the rest areas of expressways in Hokkaido based on the results of research on their behavioral ecology and physiology. First, we conducted extensive insect surveys using light traps that emit light at different wavelengths; the traps were set along the expressways in the summers of 2014–2018. The insects attracted to the light were roughly classified into those showing a preference for broadband light wavelengths (from UV-A to green) and short light wavelengths (from UV-A to blue). The former included aquatic insects and winged ants, and the latter included moths and beetles. Next, we analyzed correlations between moth emergence and daily meteorological data. When gypsy moths were abundant during an outbreak, the daily catch of gypsy moths was positively correlated with the highest ambient temperature on the catch day but not with the visibility range, wind speed, or moon phase. In contrast, the daily catch of oak silkmoths did not correlate with any of these parameters. Our results provide guidance for the management of forest insects inhabiting cool-temperate to subarctic regions based on light wavelengths with reference to weather variables.

Highlights

  • Hokkaido, the northernmost island of Japan, has rich biodiversity due to abundant natural resources

  • Effects of UV Light emitting diode (LED) on macromoth attraction To evaluate the behavioral dynamics of gypsy moths in response to light sources without and with UV light, we introduced UV LEDs to an array of visible-light LEDs in the middle of the peak emergence of gypsy moths in 2017

  • We found that the normal fluorescent light attracted twice as many gypsy moths as the UV-free fluorescent light and a UV-free LED light

Read more

Summary

Introduction

The northernmost island of Japan, has rich biodiversity due to abundant natural resources. Since Hokkaido has no rainy season and has low humidity throughout the year, unlike the main island of Japan (Honshu), it is a popular destination for tourists. In the 1990s, oak silkmoths were added to the list of insects causing outbreaks in Hokkaido [30]. Such insect outbreaks are closely related to geographical features and climatic factors [61]. Forests occupy 66% of the land area of Hokkaido, the largest percentage in Japan (Fig. 1a), and the forests supply rich resources for forest insects. Natural forests are being replaced by planted forests due to the afforestation of larches (Larix leptolepis) and birches (Betula maximowicziana), potentially promoting outbreaks of some species of insects [42]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call