Abstract

The aim of this study was to evaluate whether UVA-light-activated riboflavin-induced collagen crosslinking (UVA-CXL) can maintain the function of filtering blebs after trabeculectomy (TRAB) in rabbits. Thirty-six healthy rabbits were randomized to one of the following groups with 12 rabbits in each group: Trabeculectomy group (TRAB group), trabeculectomy combined with CXL group (CXL group), and trabeculectomy combined with MMC group (MMC group). Six rabbits of each group were performed with intraocular pressure (IOP), optical coherence tomography (OCT), and OCT angiography (OCTA). Bleb structure was observed via hematoxylin & eosin (H&E) and Masson staining. Immunohistochemistry, proteomic study, western blot, and tensile test were performed between CXL group and the control. In vitro, cell viability was evaluated by CCK-8 and Calcein/PI staining. TRPV4 and VEGF-a expression levels were measured by Q-PCR. Ca2+ concentration was observed with Fluo-4 AM. The IOP and bleb median survival day were significantly modified in CXL (5.92 ± 0.32mmHg and 15.5days) than TRAB group (7.50 ± 0.43mmHg and 9days). The bleb area and height increased. CXL inhibited vascularization, and vascularization peaked at postoperative day (POD) 14 and then decreased gradually. In proteomic analyses, Z disc, actin filament binding, and sarcomere organization were significantly enriched. CXL inhibited scleral stress‒strain in tensile tests. Compared with TRAB group, TRPV4 expression was significantly increased, but VEGF-a and TGF-β1 levels were reduced in the CXL group in western blot. Meanwhile, TRPV4 expression colocalized with CD31. In vitro, CXL inhibited HUVECs cell viability. After CXL, expression level of TRPV4 was increased and calcium influx was activated, but VEGF-a was decreased in HUVECs. This study demonstrates that intraoperative UV-RF CXL can significantly improve the success rate of TRAB via inhibiting filtering bleb vascularization. CXL increased sclera stiffness, in turn, induced TRPV4 activation, thus contributing to vascular endothelial cells suppression.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call